A MOMENTS

KEY WORDS & DEFINITIONS

I. Moment

The turning effect of a force on a rigid body.

2. Resultant Moment

The sum of all moments acting on a rigid body.

3. The Point of Tilting

The instantaneous situation where the reaction at any support or the tension in any supporting string or wire, other than at the pivot, will be zero.

4. Coplanar Forces

Forces that act in the same plane.

5. Lamina

A 2D object whose thickness can be ignored.

MODELLING ASSUMPTIONS & IMPLICATIONS

A plank is uniform ⇒ Weight acts at the centre of the plank

A plank is a rod \Rightarrow The plank remains straight

Any people/objects ⇒ Their weight acts are particles at the end of any rod

FORMULAE

WHAT DO I NEED TO KNOW

I. The **units** of Moments are **Newton metres Nm**

- 2. The **direction** of the Moment (clockwise or anticlockwise) must be included with a moment's value.
- When a rigid body is in equilibrium, the resultant force in any direction is ON and the resultant moment about any point is ONm

4 The centre of mass of a **non-uniform rod** is **not** necessarily at the **midpoint** of the rod.

@Lucyjc 1612

FORCES & FRICTION

@Lucyjc 1612

PROJECTILES

KEY WORDS & DEFINITIONS

I. Projectile

A particle moving in a vertical plane under the action of gravity.

2. Angle of Projection The initial angle the projectile makes with the horizontal direction.

3. Speed

The magnitude of the velocity, or the resultant velocities.

4. Range

The horizontal distance that the particle travels.

5. Time of Flight

The time taken for the projectile to hit the ground, or other horizontal surface, after being projected.

HORIZONTAL & VERTICAL COMPONENTS OF INITIAL VELOCITY

If a particle is projected with an initial velocity u, at an angle α above the horizontal, α is called 'The angle of projection'.

The velocity can be resolved into components that act horizontally and vertically.

$u \sin \alpha$ u $u \cos \alpha$

The horizontal component of the initial velocity = $u \cos \alpha$

The vertical component of the initial velocity = u sin $\boldsymbol{\alpha}$

WHAT DO I NEED TO KNOW

I. The horizontal acceleration of a particle = 0

- 2. The horizontal velocity of a particle is constant. Therefore s = vt
- 3. The vertical acceleration a of a partical = g (constant)
- 4. To find the horizontal & vertical components of the initial velocity, resolve horizontally & vertically
- 5. When a projectile reaches its maximum height, the vertical component of velocity = 0
- 6. Acceleration due to gravity = 9.8m/s² This does not depend on the mass of the object.
- The degree of accuracy in your answers must be consistent with the values given in the question.
 I.e. if g = IOm/s² in the question, your answer should also be given to I sig. fig. Do not leave exact surd answers.
- 8. Many projectile problems can be solved by first using the vertical motion to find the total time taken.

POSSIBLE EQUATIONS TO DERIVE

For a particle projected with initial velocity U at angle lpha above horizontal and moving freely under gravity:

- Time of flight = $\frac{2U\sin\alpha}{a}$
- Time to reach greatest height $= \frac{U \sin \alpha}{a}$
- Range on horizontal plane = $\frac{U^2 \sin 2\alpha}{\alpha}$
- Equation of trajectory:

$$v = x \tan \alpha - \frac{gx^2}{2U^2} (1 + \tan^2 \alpha)$$

where ${m y}$ is the vertical height of particle and ${m x}$ is the horizontal distance from the point of projection.

APPLICATIONS OF FORCES

Unless connected particles are moving in the same direction, they must be

considered separately.

@Lucyjc 1612

Psin30 + 4sin45 - Q = 0

WHAT DO I NEED TO KNOW

I. To solve problems involving constant acceleration in 2 dimensions, use the SUVAT equations with vector components where **u** is the initial velocity **a** is the acceleration

 ${\bf v}$ is the velocity at time t (t is a scalar)

 ${f r}$ is the displacement at time t

2. To solve problems involving variable acceleration in 2 dimensions, use calculus with vectors by considering each function of time (the vector component) separately.

3. When integrating a vector for a variable acceleration problem, the constant of integration, c, will also be a vector.

4. To find constants of integration, look for initial conditions or boundary conditions.

5. Displacement, velocity & acceleration can be given using *i-j* notation, or as column vectors.

x

FORMULAE

The formula to find the position vector, r, of a particle starting at position \mathbf{r}_0 that is moving with constant velocity \mathbf{v} is

$$\boldsymbol{r} = \boldsymbol{r}_0 + \boldsymbol{v}t$$

Constant acceleration vector equations:

$$\boldsymbol{v} = \boldsymbol{u} + \boldsymbol{a}t$$
$$\boldsymbol{r} = \boldsymbol{u}t + \frac{1}{2}\boldsymbol{a}t^2$$

Calculus for variable acceleration:

Velocity, if displacement is a function of time:

$$\boldsymbol{v} = \frac{\mathrm{d}\boldsymbol{s}}{\mathrm{d}t}$$
$$\int (\boldsymbol{v}) \,\mathrm{d}t = \boldsymbol{s}$$

Acceleration, if velocity is a function of time

$$\boldsymbol{a} = \frac{\mathrm{d}\boldsymbol{\nu}}{\mathrm{d}t} = \frac{\mathrm{d}^2\boldsymbol{s}}{\mathrm{d}t^2}$$
$$\int (\boldsymbol{a}) \,\mathrm{d}t = \boldsymbol{\nu}$$

DOT NOTATION & DIFFERENTIATING VECTORS

Dot notation is a shorthand for differentiation with respect to time.

$$= \frac{\mathrm{d}x}{\mathrm{d}t} \qquad \dot{y} = \frac{\mathrm{d}y}{\mathrm{d}t} \qquad \ddot{x} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} \qquad \ddot{y} = \frac{\mathrm{d}^2y}{\mathrm{d}t^2}$$

To differentiate a vector quantity in the form f(t)I + g(t)j, differentiate each function of time separately.

If
$$r = x\mathbf{i} + yj$$
, then $v = \frac{\mathrm{d}r}{\mathrm{d}t} = \dot{r} = \dot{x}\mathbf{i} + \dot{y}j$ and $a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2r}{\mathrm{d}t^2} = \ddot{r} = \ddot{x}\mathbf{i} + \ddot{y}j$

@Lucyjc 1612